GPU
使用方法
Kubernetes v1.8 及更新版本
NVIDIA 插件
# Install docker-ce
curl https://get.docker.com | sh \
&& sudo systemctl --now enable docker
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/experimental/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
# Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
# Test nvidia-smi with the latest official CUDA image
sudo docker run --rm --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smiGCE/GKE GPU 插件
NVIDIA GPU Operator
請求 nvidia.com/gpu 資源示例
nvidia.com/gpu 資源示例Kubernetes v1.6 和 v1.7
多種型號的 GPU
使用 CUDA 庫
附錄:CUDA 安裝方法
參考文檔
Last updated